Fractal Analysis and Lacunarity of tractography images of the human brain.

Provata A., Katsaloulis P., Hizanidi J.

Verganelakis D.A.

Purpose:

Study the possibility of describing neuronal tracts of human brain as fractal objects, and use the corresponding fractal dimensions as an index of pathology!

A quantitative measurement!

Objects with Fractal Dimensions DO exist in nature:

Objects with Fractal Dimensions DO exist in nature:

Fractal dimension of the brain?

This self-similarity exists in the real world but not in all scales!!!

Dimension of an object

Common objects (mathematical and physical)

$$M = \rho V = \rho L^D$$

Fractal objects (mathematical and physical)

$$M = \rho L^{D_f}$$

with $D_f < D$

where D is the spatial dimension, M is the mass of the object and ρ is the density.

Calculation of Fractal Dimension

Hausdorff fractal dimension

Fractal Dimension D_f is a quantitive self similarity measure

Box counting method

Divide space into equal partitions of length r

$$D_{bc} = \lim_{r \to 0} \frac{\log N(r)}{\log \frac{1}{r}} = -\lim_{r \to 0} \frac{\log N(r)}{\log r}$$

where N(r) is the number of boxes of size r

- Fractal dimension analysis requires an "existance" -"non-existance" approach.
- Images converted to inverse black & white (working grid)

Divide area into pixels of equal dimensions (r, 1<r<64))

$$r = 1$$
 $N(1)=18$

$$r = 2$$

N(2)=7

$$r = 3$$

N(3)=4

Double logarithmic: slope = D_f

For purely homogeneous coverage of the 2-D space, the dimension is $D_f = 2$.

Results:

Conclusions:

2-D Fractal analysis:

Neurons from a specific ROI average value D_f: 1.58 - 1.60.

- Homogeneous between healthy subjects.
- Tracts of neurons from the same ROI imaged at different angles have the same D_f, independently of ROI and brain area.

Lacunarity analysis:

Different lacunarity values for neurons:

- originating from different parts of the brain,
- pathological vs healthy neurons.

→ HEALTHY / PATHOLOGICAL AREAS.